屋子外。
看着急匆匆跑回屋內的小牛,徐雲隱約意識到了什麼,也快步跟了上去。
「嘭——」
剛一進屋,徐雲便聽到了一道重物撞擊的聲音。
他順勢看去,只見此時小牛正一臉懊惱的站在書桌邊,左手握拳,指關節重重的壓在桌上。
很明顯,剛才小牛對着這張書桌來了波蓄意轟拳。
徐雲見狀走上前,問道:
「艾薩克先生,您這是.....」
「你不懂。」
小牛有些煩躁的揮了揮手,但沒幾秒便又想到了什麼:
「肥魚,你——或者那位韓立爵士,對數學工具了解嗎?」
徐雲再次裝傻犯楞的看了他一眼,問道:
「數學工具?您是說尺子?還是圓規?」
聽到這番話,小牛的心立時涼了一半,但話說了半截總不能就這樣停住,便繼續道:
「不是現實的工具,而是一套能夠計算變化率的理論。
比如剛才的色散現象,那是一種瞬時的變化率,甚至還可能牽扯到某些肉眼無法見到的微粒。
而要計算這種變化率,我們就需要用到另外一種可以連續累加的工具,去計算折射角的積。
比如n個a+b相乘,就是從a+b中取一個字母a或b的積,例如(a+b)^2=a^2+2ab+b^2...算了,我估計你也聽不懂。」
徐雲似笑非笑的看了他一眼,說道:
「我聽得懂啊,楊輝三角嘛。」
「嗯,所以還是準備一下等下去威廉舅.....等等,你說什麼?」
小牛原本正順着自己的念頭在說話,聽清徐雲的話後頓時一愣,旋即猛然抬起頭,死死地盯着他:
「羊肥三攪?那是什麼?」
徐雲想了想,朝小牛伸出手:
「能把筆遞給我嗎,艾薩克先生?」
如果這是在一天前,也就是小牛剛見到徐雲那會兒,徐雲的這個請求百分百會被小牛拒絕。
甚至有可能會被再送上一句『你也配?』。
但隨着不久前色散現象的推導,此時的小牛對於徐雲——或者說他身後的那位韓立爵士,已經隱約產生了一絲興趣與認同。
否則他剛剛也不會和徐雲多解釋那麼一番話了。
因此面對徐雲的要求,小牛罕見的遞出了筆。
徐雲接過筆,在紙上快速的寫畫了一個圖:
.............1
....... 1......1
....1......2......1
1.....3.......3.........1(請忽略省略號,不加的話起點會自動縮進,暈了)
.......
徐雲一共畫了八行,每行的最外頭兩個數字都是1,組成了一個等邊三角形。
熟悉這個圖像的朋友應該知道,這便是赫赫有名的楊輝三角,也叫帕斯卡三角——在國際數學界,後者的接受度要更高一些。
但實際上,楊輝發現這個三角形的年份要比帕斯卡早上四百多年:
楊輝是南宋生人,他在1261年《詳解九章算法》中,保存了一張寶貴圖形——「開方作法本源」圖,也是現存最古老的一張有跡可循的三角圖。
不過由於某些眾所周知的原因,帕斯卡三角的傳播度要廣很多,一些人甚至根本不認楊輝三角的這個名字。
因此縱有楊輝的原筆記錄,這個數學三角形依舊被叫做了帕斯卡三角。
但值得一提的是......
帕斯卡研究這幅三角圖的時間是1654年,正式公佈的時間是1665年11月下旬,離現在.....